Expectation-Maximization Method for EEG-Based Continuous Cursor Control

نویسندگان

  • Xiaoyuan Zhu
  • Cuntai Guan
  • Jian-Kang Wu
  • Yimin Cheng
  • Yixiao Wang
چکیده

To develop effective learning algorithms for continuous prediction of cursor movement using EEG signals is a challenging research issue in brain-computer interface (BCI). In this paper, we propose a novel statistical approach based on expectation-maximization (EM) method to learn the parameters of a classifier for EEG-based cursor control. To train a classifier for continuous prediction, trials in training data-set are first divided into segments. The difficulty is that the actual intention (label) at each time interval (segment) is unknown. To handle the uncertainty of the segment label, we treat the unknown labels as the hidden variables in the lower bound on the log posterior and maximize this lower bound via an EM-like algorithm. Experimental results have shown that the averaged accuracy of the proposed method is among the best.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways

The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...

متن کامل

The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways

The performance of many traffic control strategies depends on how much the traffic flow models are accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive loop d...

متن کامل

ICA and Committee Machine-Based Algorithm for Cursor Control in a BCI System

In recent years, brain-computer interface (BCI) technology has emerged very rapidly. Brain-computer interfaces (BCIs) bring us a new communication interface technology which can translate brain activities into control signals of devices like computers, robots. The preprocessing of electroencephalographic (EEG) signal and translation algorithms play an important role in EEG-based BCIs. In this s...

متن کامل

Electroencephalographic(EEG)-based communication: EEG control versus system performance in humans.

People can learn to control electroencephalographic (EEG) sensorimotor rhythm amplitude so as to move a cursor to select among choices on a computer screen. We explored the dependence of system performance on EEG control. Users moved the cursor to reach a target at one of four possible locations. EEG control was measured as the correlation (r(2)) between rhythm amplitude and target location. Pe...

متن کامل

EEG-based communication and control: speed-accuracy relationships.

People can learn to control mu (8-12 Hz) or beta (18-25 Hz) rhythm amplitude in the EEG recorded over sensorimotor cortex and use it to move a cursor to a target on a video screen. In our current EEG-based brain-computer interface (BCI) system, cursor movement is a linear function of mu or beta rhythm amplitude. In order to maximize the participant's control over the direction of cursor movemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2007  شماره 

صفحات  -

تاریخ انتشار 2007